

ABHISHYANDH GLOBAL SOLUTIONS

Aditya Enclave, Nilgiri Block, 6th Floor, 605A, Beside Ameerpet Metro Station, Ameerpet- Hyderabad. 040-66858189 (b) 8897830910 https://abhishyandh.co.in info@abhishyandh.co.in

## Artificial Intelligence and Machine Learning



## Artificial Intelligence and Machine Learning Course Content

| Module                        | Topics                              | Subtopics                                                                                                                                                                       | Details                                                                                                                                                     |
|-------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Introduction to AI &<br>ML | Overview of Al                      | - History of Al<br>- Applications of Al<br>- Al vs ML vs Data<br>Science                                                                                                        | Understanding the basic concepts and<br>evolution of AI and ML. Discussing real-<br>world applications and differences<br>between AI, ML, and Data Science. |
|                               | Introduction to<br>Machine Learning | - Types of ML:<br>Supervised,<br>Unsupervised,<br>Reinforcement<br>- Key Concepts:<br>Algorithms, Models,<br>Features, Labels                                                   | Differentiating between types of ML<br>and understanding fundamental<br>concepts.                                                                           |
|                               | Tools and Frameworks                | <ul> <li>Python &amp; Libraries</li> <li>(NumPy, Pandas,</li> <li>Scikit-Learn)</li> <li>Jupyter Notebook</li> <li>Introduction to</li> <li>TensorFlow &amp; PyTorch</li> </ul> | Getting familiar with tools and libraries<br>commonly used in AI and ML.                                                                                    |
| 2. Python for AI/ML           | Python Basics                       | <ul> <li>Variables and Data</li> <li>Types</li> <li>Control Structures</li> <li>Functions and</li> <li>Modules</li> </ul>                                                       | Building a foundation in Python programming.                                                                                                                |
|                               | Data Handling with<br>Python        | <ul> <li>NumPy: Arrays and</li> <li>Operations</li> <li>Pandas: DataFrames,</li> <li>Series, Data Cleaning</li> <li>Data Visualization:</li> <li>Matplotlib, Seaborn</li> </ul> | Learning data manipulation and<br>visualization techniques essential for<br>ML.                                                                             |
|                               | Working with Datasets               | - Loading and<br>Exploring Datasets                                                                                                                                             | Practical experience with real datasets, preparing them for ML models.                                                                                      |

| Module                                | Topics                       | Subtopics                                                                                                                                                                                                | Details                                                                      |
|---------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                       |                              | - Data Preprocessing:<br>Handling Missing Data,<br>Encoding<br>- Data Splitting:<br>Train/Test Split, Cross-<br>Validation                                                                               |                                                                              |
| 3. Statistics &<br>Mathematics for ML | Probability Theory           | - Basic Probability<br>Concepts<br>- Conditional<br>Probability<br>- Bayes' Theorem                                                                                                                      | Understanding probability as it applies<br>to machine learning.              |
|                                       | Statistics Basics            | - Descriptive Statistics:<br>Mean, Median, Mode<br>- Inferential Statistics:<br>Hypothesis Testing,<br>Confidence Intervals                                                                              | Learning how to describe and infer<br>data.                                  |
|                                       | Linear Algebra               | - Vectors and Matrices<br>- Eigenvalues and<br>Eigenvectors<br>- Matrix<br>Decomposition (SVD,<br>PCA)                                                                                                   | Mathematical foundations critical for<br>understanding ML algorithms.        |
|                                       | Calculus                     | - Derivatives and<br>Integrals<br>- Gradient Descent<br>- Partial Derivatives                                                                                                                            | Applying calculus to optimize machine<br>learning models.                    |
| 4. Supervised Learning                | Regression Analysis          | <ul> <li>Linear Regression</li> <li>Polynomial</li> <li>Regression</li> <li>Regularization</li> <li>Techniques (Ridge,</li> <li>Lasso)</li> </ul>                                                        | Understanding regression models and techniques to improve model performance. |
|                                       | Classification<br>Algorithms | <ul> <li>Logistic Regression</li> <li>K-Nearest Neighbors</li> <li>(KNN)</li> <li>Support Vector</li> <li>Machines (SVM)</li> <li>Decision Trees</li> <li>Random Forests</li> <li>Naive Bayes</li> </ul> | Learning various classification<br>algorithms and their applications.        |

| Module                          | Topics                                   | Subtopics                                                                                                                                         | Details                                                                               |
|---------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                 | Model Evaluation                         | - Metrics: Accuracy,<br>Precision, Recall, F1-<br>Score<br>- ROC Curve and AUC<br>- Cross-Validation<br>- Hyperparameter<br>Tuning                | Techniques to evaluate and improve<br>model performance.                              |
| 5. Unsupervised<br>Learning     | Clustering Techniques                    | - K-Means Clustering<br>- Hierarchical<br>Clustering<br>- DBSCAN                                                                                  | Exploring clustering methods to group<br>data.                                        |
|                                 | Dimensionality<br>Reduction              | - Principal Component<br>Analysis (PCA)<br>- t-SNE<br><mark>- Autoencoders</mark>                                                                 | Techniques to reduce the<br>dimensionality of data while preserving<br>its structure. |
|                                 | Association Rule<br>Learning             | - Apriori Algorithm<br>- Eclat Algorithm<br>- Market Basket<br>Analysis                                                                           | Finding relationships between variables<br>in large datasets.                         |
| 6. Advanced Machine<br>Learning | Ensemble Methods                         | <ul> <li>Bagging &amp; Boosting</li> <li>AdaBoost</li> <li>Gradient Boosting</li> <li>XGBoost</li> <li>Stacking</li> </ul>                        | Advanced techniques to combine multiple models for better performance.                |
|                                 | Neural Networks                          | <ul> <li>Introduction to</li> <li>Neural Networks</li> <li>Activation Functions</li> <li>Backpropagation</li> <li>Deep Learning Basics</li> </ul> | Understanding the architecture and training of neural networks.                       |
|                                 | Deep Learning with<br>TensorFlow/PyTorch | - Building Neural<br>Networks<br>- Convolutional Neural<br>Networks (CNN)<br>- Recurrent Neural<br>Networks (RNN)<br>- Transfer Learning          | Hands-on experience with deep<br>learning frameworks.                                 |
|                                 | Natural Language<br>Processing (NLP)     | - Text Preprocessing<br>- Bag of Words & TF-<br>IDF<br>- Sentiment Analysis                                                                       | Techniques to work with text data and build NLP models.                               |

| Module                       | Topics                                       | Subtopics                                                                                                                                                                                        | Details                                                                        |
|------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                              |                                              | - Word Embeddings<br>(Word2Vec, GloVe)<br>- Transformers and<br>BERT                                                                                                                             |                                                                                |
| 7. Reinforcement<br>Learning | Fundamentals of<br>Reinforcement<br>Learning | - Markov Decision<br>Process<br>- Exploration vs<br>Exploitation<br>- Policy Gradients                                                                                                           | Understanding the basics of<br>reinforcement learning and its<br>applications. |
|                              | Q-Learning & Deep Q-<br>Learning             | - Q-Learning Algorithm<br>- Deep Q-Networks<br>(DQN)<br>- Applications in<br>Games and Robotics                                                                                                  | Building intelligent agents using reinforcement learning techniques.           |
| 8. AI/ML in Practice         | Model Deployment                             | <ul> <li>Model Saving and<br/>Loading</li> <li>Deployment with</li> <li>Flask or FastAPI</li> <li>Dockerizing ML</li> <li>Models</li> <li>Model Monitoring &amp;</li> <li>Maintenance</li> </ul> | Learning how to deploy models in production environments.                      |
|                              | Case Studies &<br>Projects                   | - Real-World AI/ML<br>Case Studies<br>- Capstone Project:<br>End-to-End ML<br>Solution                                                                                                           | Applying the learned concepts to real-<br>world problems.                      |
|                              | Ethical AI & ML                              | - Bias in Al<br>- Fairness,<br>Accountability, and<br>Transparency<br>- Al Regulations &<br>Guidelines                                                                                           | Understanding the ethical implications<br>of AI and ML technologies.           |